Skip to content
ℕ𝔸𝕊𝔸™ℕ𝕒𝕤𝕒𝕣𝕖™𝕊𝕡𝕒𝕔𝕖𝕏™ https://nasa.re/

Nasare™🚀

フレッシュ スペース & テクノロジー NEWS📢

  • About 𝒩𝒶𝓈𝒶𝓇𝑒™
  • SMART Tools
  • SMART AI
    • Kubeshark PCAP Export/Import
    • Coaching engineering managers to employ on organizational issues
    • Zelda: Hyperlink’s Awakening game engine documentation (2021)
    • Commercial Resupply Services-CRS
  • Show HN
    • WINd3x、iPod Bootrom エクスプロイトは 10 年遅かった
    • Just by Notでプログラミングするシステム オブジェクト指向プログラミングの活用
    • 主な BGP 増加をレジデンス Windows デスクトップに追加する
    • ガジェットの複雑さが増し、余分な IP の再利用が促進される
    • 新しい GitHub CLI 拡張インストゥルメント
    • Kubernetes を 7,500 ノードにスケーリング (2021 年)
    • Wander アプリ用の軽量なオンザフリット構成ライブラリ
    • Ask HN
      • Declare HN: I wrote a WebAssembly Interpreter and Toolkit in C
      • Describe HN: Kandria, an action RPG made in Frequent Voice, is now out
      • Demonstrate HN: ClickHouse-local – a runt instrument for serverless files analytics
      • Brand HN: Motion photographs Watchlist Chrome Extension
      • Existing HN: Connmap – Desktop widget that reveals your TCP company on an international diagram
      • Level to HN: An initiate source tool to generate Jet Engine compressors
      • Insist HN: Ov – characteristic smartly off terminal pager
      • Level to HN: Graphic-Walker – A special kind of originate-offer different to Tableau
      • Level to HN: A corpulent game of snake encoded in a url
      • Point out HN: Kweb: A a ways away interface to the earn browser’s DOM
      • Present HN: Nanelo DNS – Privacy-Kindly, European Nameservers
      • Reward HN: Vim on-line editor the exercise of WebAssembly, storing files the exercise of IndexedDB
      • Show HN: AREnets – TensorFlow-basically based mostly Relation Extraction equipment for work in Colab
      • Speak HN: What sub $200 product improved HN readers’ 2022
      • Uncover HN: Easy internet app for teenagers to management a single Philips Hue light
      • Advise HN: Daft Art – an album veil maker powered by AI and curated aesthetics
    • Show HN
      • Reward HN: Vim on-line editor the exercise of WebAssembly, storing files the exercise of IndexedDB
      • Android phones will at the moment obtain iPhone-love SOS satellite texting
      • Demonstrate HN: ClickHouse-local – a runt instrument for serverless files analytics
      • Show HN: AREnets – TensorFlow-basically based mostly Relation Extraction equipment for work in Colab
      • Present HN: Nanelo DNS – Privacy-Kindly, European Nameservers
      • Insist HN: Ov – characteristic smartly off terminal pager
      • Level to HN: An initiate source tool to generate Jet Engine compressors
      • Speak HN: What sub $200 product improved HN readers’ 2022
      • Advise HN: Daft Art – an album veil maker powered by AI and curated aesthetics
      • Uncover HN: Easy internet app for teenagers to management a single Philips Hue light
      • Level to HN: A corpulent game of snake encoded in a url
    • Brand HN: Motion photographs Watchlist Chrome Extension
    • Existing HN: Connmap – Desktop widget that reveals your TCP company on an international diagram
    • Point out HN: Kweb: A a ways away interface to the earn browser’s DOM
    • Declare HN: I wrote a WebAssembly Interpreter and Toolkit in C
    • Tag HN: Using Key-Value Retail outlets in Serverless Codehooks.io Applications
    • Declare HN: I wrote a WebAssembly Interpreter and Toolkit in C
    • Point out HN: Kweb: A a ways away interface to the earn browser’s DOM
    • Existing HN: Connmap – Desktop widget that reveals your TCP company on an international diagram
    • Brand HN: Motion photographs Watchlist Chrome Extension
    • Level to HN: A corpulent game of snake encoded in a url
    • Uncover HN: Easy internet app for teenagers to management a single Philips Hue light
    • Advise HN: Daft Art – an album veil maker powered by AI and curated aesthetics
    • Speak HN: What sub $200 product improved HN readers’ 2022
    • Level to HN: An initiate source tool to generate Jet Engine compressors
    • Level to HN: Graphic-Walker – A special kind of originate-offer different to Tableau
    • Insist HN: Ov – characteristic smartly off terminal pager
    • Present HN: Nanelo DNS – Privacy-Kindly, European Nameservers
    • Show HN: AREnets – TensorFlow-basically based mostly Relation Extraction equipment for work in Colab
    • Demonstrate HN: ClickHouse-local – a runt instrument for serverless files analytics
    • Reward HN: Vim on-line editor the exercise of WebAssembly, storing files the exercise of IndexedDB
  • A Computer virus and a Dilemma
    • OCIS – OwnCloud Countless Scale
    • A Princeton student built an app which is ready to detect if ChatGPT wrote an essay
    • GitHub Is Sued, and We Would possibly perhaps Learn Something About Creative Commons Licensing
    • Adobe’s Command material analysis can be using photos/videos to narrate AI w/o consent
    • Ultralearning a.k.a. how I learned to code
    • Automatic1111 is assist on GitHub after taking away Embedding Links
    • Where Your Sides Came From
    • What Is a Pig Butchering Rip-off?
    • Submit-processing is ruining iPhone photos
    • Clos Topologies and Centralized Retain a watch on in Google’s Datacenter Community
    • Miller Engineering DS-1 House Planetarium
    • Gimel Studio: Non-harmful, 2D image editor
  • Technology
    • Miller Engineering DS-1 House Planetarium
    • Apple Doctors: to construct it as a file it is advisable to electronic mail it to your self
    • The Air India passenger who urinated on a girl has been fired by Wells Fargo
    • The Filesystem Hierarchy Usual Comes to Guix Containers
    • Sooner than it sued Google for copying from Java, Oracle changed into as soon as copying IBM’s SQL (2020)
    • The i3-gaps mission has been merged with i3
    • Making an Alphorn from Scratch
    • Apple: Braille Individual Guides
    • MotherDuck Is a Original Thought
    • The class of CGI and simple make
    • Like a mercurial tour of DragonFly BSD 6.4?
    • computer science
    • AI
    • Artificial intelligence
    • Technology
    • Ai
    • Apple
    • digital
  • TOP HN
    • anti-Mastodon
    • TOP HN
      • Show HN
      • Ask HN
      • coding
      • ガジェットの複雑さが増し、余分な IP の再利用が促進される
      • 新しい GitHub CLI 拡張インストゥルメント
      • Kubernetes を 7,500 ノードにスケーリング (2021 年)
      • Just by Notでプログラミングするシステム オブジェクト指向プログラミングの活用
      • Describe HN: Kandria, an action RPG made in Frequent Voice, is now out
      • WINd3x、iPod Bootrom エクスプロイトは 10 年遅かった
      • Wander アプリ用の軽量なオンザフリット構成ライブラリ
      • Artificial intelligence
      • 主な BGP 増加をレジデンス Windows デスクトップに追加する
      • Technology
      • Level to HN: Graphic-Walker – A special kind of originate-offer different to Tableau
      • Declare HN: I wrote a WebAssembly Interpreter and Toolkit in C
      • Point out HN: Kweb: A a ways away interface to the earn browser’s DOM
      • Existing HN: Connmap – Desktop widget that reveals your TCP company on an international diagram
      • Advise HN: Daft Art – an album veil maker powered by AI and curated aesthetics
      • Brand HN: Motion photographs Watchlist Chrome Extension
      • Declare HN: I wrote a WebAssembly Interpreter and Toolkit in C
      • Demonstrate HN: ClickHouse-local – a runt instrument for serverless files analytics
      • Describe HN: Kandria, an action RPG made in Frequent Voice, is now out
      • Existing HN: Connmap – Desktop widget that reveals your TCP company on an international diagram
      • Insist HN: Ov – characteristic smartly off terminal pager
      • Just by Notでプログラミングするシステム オブジェクト指向プログラミングの活用
      • Kubernetes を 7,500 ノードにスケーリング (2021 年)
      • Level to HN: A corpulent game of snake encoded in a url
      • Level to HN: An initiate source tool to generate Jet Engine compressors
      • Level to HN: Graphic-Walker – A special kind of originate-offer different to Tableau
      • Point out HN: Kweb: A a ways away interface to the earn browser’s DOM
      • Present HN: Nanelo DNS – Privacy-Kindly, European Nameservers
      • Reward HN: Vim on-line editor the exercise of WebAssembly, storing files the exercise of IndexedDB
      • Show HN: AREnets – TensorFlow-basically based mostly Relation Extraction equipment for work in Colab
      • Speak HN: What sub $200 product improved HN readers’ 2022
      • Uncover HN: Easy internet app for teenagers to management a single Philips Hue light
      • Wander アプリ用の軽量なオンザフリット構成ライブラリ
      • WINd3x、iPod Bootrom エクスプロイトは 10 年遅かった
      • ガジェットの複雑さが増し、余分な IP の再利用が促進される
      • 主な BGP 増加をレジデンス Windows デスクトップに追加する
      • 新しい GitHub CLI 拡張インストゥルメント
      • ロンドンで*ダウン*を継続的に見つめる: Pavement Oddities
      • 報酬 HN: C の 30 行でスピンロック
      • FAA の NOTAM とは何ですか? 航空専門家が機械の仕組みを説明
      • ナノGPT
      • 1 ビット LCD のグレースケール (2022)
      • The Muse (YC W12) は FP&A のシニア ディレクターを採用しています
      • Zen (YC S21) はグロース エンジニアを採用しています
      • Tall Inquire of (YC W21) が B2B 回顧録の幹部を採用
      • Actiondesk (YC S19) は、プロダクト ドレスメーカーを採用しています (4-6 か月の契約)
      • Oven (YC S19) は、Bun を作成するために C/C++ または Zig エンジニアを採用しています。
      • WInd3x, the iPod Bootrom exploit 10 years too unhurried
      • Sign HN: FASTA recordsdata を操作するための FUSE モジュール
      • HN を指します: Socketify.py: PyPy3 および Python3 用の Http/Https および WebSocket サーバー
      • Wage Development Continues to Gradual in the UK and Euro House
      • Stage Supervisor for the unimpressed: 1 Getting started
      • First public free up of Pushup: a brand unique compiler for making net apps in Trip
      • Fixing Cart-Pole Swingup with a Hierarchical Controller
      • Flight Testing the Touchdown Radar for Mars Science Laboratory 2011-06-21T17:36:36Z
      • Flightcontrol (YC W22) is hiring first Developer Recommend
      • Flying boats and other tech for cleaner shipping
      • Four Finalist Touchdown Location Candidates for Mars Science Laboratory 2008-11-19T16:21:01Z
      • France’s prized nuclear sector stalled in Europe’s hour of want
      • French startup unveils new residential thermo-acoustic warmth pump
      • FTC Cracks Down on Firms That Impose Contaminated Noncompete Restrictions
      • FTX’s Aged Prime Lawyer Aided US Authorities in Bankman-Fried Case
      • FY18 NASA lėšų šnypštimas 2017-05-22T00:00:00Z
      • G-3PO: A protocol droid for Ghidra, or GPT-3 for reverse-engineering
      • Gail.com FAQ
      • Gemini-Titan (GT)-6 – Gemini 6 of 7 – 지역 사진 – 외부 지역 1965-12-15T00:00:00Z
      • Geoffrey Hinton Publishes Original Deep Learning Algorithm
      • Germany warns: AI fingers flee already underway (2021)
      • Gimel Studio: Non-harmful, 2D image editor
      • GitHub Availability File
      • GitHub Is Sued, and We Would possibly perhaps Learn Something About Creative Commons Licensing
      • Google needs RISC-V to be a “tier-1” Android architecture
      • Google researcher, lengthy out of math, cracks devilish dispute about gadgets
      • Google start sourced CDC File Transfer from the ashes of Stadia
      • GRC-2003-C-02097 2004-05-01T00:00:00Z
      • GRC-2013-C-05246 2009-11-26T00:00:00Z
      • Hello world!
      • Highlights of Science Launching on SpaceX CRS-15 2018-06-24T00:00:00Z
      • Hilf Al-Fudul
      • HiOperator (YC S16) Is Hiring VP of Engineering
      • HN を指します: Socketify.py: PyPy3 および Python3 用の Http/Https および WebSocket サーバー
      • How kind I blueprint a pair of buttocks?
      • How will the haj switch as international temperatures upward thrust?
      • Human gene linked to bigger brains turned into as soon as born from apparently pointless DNA
      • Hundreds of scientists publish a paper every 5 days
      • In Favor of Friction and Flexibility
      • Indicate HN: Klotho – Change into straightforward code into cloud native code
      • Indoor farming isn’t exact for the smartly off
      • Iranian assault drone came across to have parts from more than a dozen US companies
      • Israeli researcher experiences leak of 235M Twitter-linked e-mail addresses
      • Jam Stations in Low Earth Orbit
      • Jazz Is Freedom
      • JPL-20171102-TECHf-0001-ドローントリップ 人間vs機械 2017-11-17T00:00:00Z
      • JPL에서 NASA의 MSI 콘도미니엄 액셀러레이터 2022-08-25T00:00:00Z
      • JPSO extinct facial recognition abilities to arrest a man. The tech modified into once defective
      • jsc2017e136097 – 12 月 4 日,俄罗斯联邦地区公司 (Roscosmos) 的远征 54-55 号机组人员 Anton Shkaplerov 在俄罗斯 Principal person City 的加加林宇航员训练中心上向整洁的祝福者挥手致意,当时他登上了前往附近的 Chkalovsky Ai 的公共汽车2017-12-04T00:00:00Z
      • Kemble’s Cascade of Stars
      • Kepler-90 マシン (アーティストの考え) 2017-12-14T00:00:00Z
      • Koichi Wakata SpaceX 코칭 2022-06-27T00:00:00Z
      • KSC and Proud to Be Heart-Wide Diversity Tournament 2019-08-20T00:00:00Z
      • KSC ir „Proud to Be Center“ įvairovės turnyras 2019-08-20T00:00:00Z
      • AI
      • Artificial intelligence
      • Auto-Generate
      • anti-Mastodon
      • Awesome
      • BioSentinel
      • CATEGORIES
      • DC
      • Dione
      • Diversity
      • drone racing
      • drones
      • Dulles
      • education
      • Event
      • filmstock
      • Goddard
      • AI
      • Ask HN
      • autonomous
      • coding
      • computer science
      • Clusters
      • Artificial intelligence
        • Ai
        • Apple
        • Tesla
        • digital
        • MESSENGER
        • Device
        • Charts
        • change
        • Shows
        • fraud
        • Former
        • fucking
        • purge
        • Works
        • entering
        • Databases
        • Review
        • Strangely
        • Instinct
        • staff
        • Salesforce
        • intern
        • Involuntary
        • promise
        • Twilio’s
        • nisv live
        • attack
        • Iranian
        • France’s
        • prized
        • infrastructure
        • Debian-based
        • nisv s02 ep03
        • siduction
        • Awesome
        • Calculate
        • Beautiful
        • Linux
        • Start
        • dollar
        • Messier
        • Daughters
        • ‘Breakthrough’
        • obesity
        • Al-Fudul
        • sixty years
        • PyTorch
        • discloses
        • Ancient
        • Stone
        • Popup
        • design
        • public
        • expanding
        • cloud
        • forest
        • startup
        • French
        • batteries
        • fleas
        • spotted
        • Petals
        • language
        • Habitual
        • checking
        • GitHub
        • Availability
        • layers
        • inconsistencies
        • Affair
        • Quasi-War
        • Sergey
        • Irate
        • bestseller
        • necessarily
        • Scientists
        • Titan
        • twitch
        • FGS/NIRISS – Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph
        • infrared
        • ISIM – Integrated Science Instrument Module
        • JHU – Johns Hopkins University
        • JWST – James Webb Space Telescope
        • JWST – James Webb Space Telescope
        • absolute zero
        • Big Bang
        • Peace
        • Studio
        • Making
        • project
        • -gaps
        • warns
        • Germany
        • Braille
        • MotherDuck
        • prototype
        • Challenges
        • Infinite
        • OwnCloud
        • Novel
        • Before
        • copying
        • California
        • getting
        • States
        • Criminal
        • Brother
        • Released
        • Method
        • owners
        • ‘richsession’
        • email
        • Elements
        • Where
        • passenger
        • Hierarchy
        • Filesystem
        • economic
        • Crew Dragon
        • Bridenstine
        • Scientific
        • Heaviosity
        • Patterns
        • Unexpected
        • minimalist
        • Ecode
        • Alpha
        • Wolfram
        • Tailwind
        • HiOperator
        • Klotho
        • TEAMS
        • ROBOTICS
        • Antelope
        • Sponsors
        • Ellen Gertsen
        • Transform
        • Flightcontrol
        • subscriptions
        • Internet
        • Theory-building
        • you’re
        • looking
        • Transfer
        • error’
        • Tails
        • migrate
        • Building
        • Bitmovin
        • Remote
        • PhotoRoom
        • Company
        • Taking
        • Ribbon
        • BibDesk
        • Android
        • profilers
        • phones
        • modern
        • Mastercard
        • private
        • We’ve
        • reportedly
        • Microsoft
        • Artsy
        • trades
        • skilled
        • Polygon
        • Flying
        • Princeton
        • Codemods
        • Coaching
        • UK’s
        • popping
        • sourced
        • Wikipedia
        • admin
        • Indoor
        • quick
        • Mysterious
        • Spotify
        • Fancy
        • Spotify
        • Weird
        • mail-order
        • Recipients
        • computer
        • optics
        • partnership
        • commercial
        • telemetry
        • Crisis
        • billionaire
        • Party
        • Onelab
        • Faster
        • general
        • Adobe’s
        • database
        • FinanceDatabase
        • Numerical
        • Freedom
        • concrete
        • Stacks
        • computer science
        • NASA
    • Show HN
    • Ask HN
    • Technology
    • computer science
    • coding
    • Clusters
    • AI
    • drones
    • autonomous
    • Auto-Generate
    • Ask HN
    • Show HN
    • The SMART Science™
    • google
  • CRYPTO
    • Blockchain
    • farming
    • Billionaires
    • FTX’s
    • FinanceDatabase: A database of 300.000 symbols (ETFs, Currencies, Crypto)
  • Artificial intelligence
  • Toggle search form
  • E-Ink Badge: あなたが望んでいたことを知らなかった最もクールなバッジ
    E-Ink Badge: あなたが望んでいたことを知らなかった最もクールなバッジ Artificial intelligence
  • Show HN: Polymath: 任意のトラック ライブラリ実数を ML を使用してサンプル ライブラリに変換する
    Show HN: Polymath: 任意のトラック ライブラリ実数を ML を使用してサンプル ライブラリに変換する Awesome
  • A 修正された「創設者のために保護された」は、適切な現金を提示します
    A 修正された「創設者のために保護された」は、適切な現金を提示します “Safe
  • अंतरिक्ष यात्री कोचिंग 5 2022-08-18T00:00:00Z
    अंतरिक्ष यात्री कोचिंग 5 2022-08-18T00:00:00Z Ask HN
  • Portray HN: Mathesar – Postgres データベースの共同 UI のソースを開始
    Portray HN: Mathesar – Postgres データベースの共同 UI のソースを開始 Artificial intelligence
  • ReMarkable の Form Folio キーボード布団は、気晴らしのない技術についての考えを促します
    ReMarkable の Form Folio キーボード布団は、気晴らしのない技術についての考えを促します anti-Mastodon
  • 화성 과학 실험실 로버 정리 2011-11-10T18:00:02Z
    화성 과학 실험실 로버 정리 2011-11-10T18:00:02Z Ask HN
  • Supply Chain Assault PyPI パッケージ「Colorslib」、「Httpslib」、「Libhttps」の使用
    Supply Chain Assault PyPI パッケージ「Colorslib」、「Httpslib」、「Libhttps」の使用 Artificial intelligence
  • レコード センターで TCP を代替する時が来ましたか?
    レコード センターで TCP を代替する時が来ましたか? Artificial intelligence
  • iPhoneのiOSバージョンのダウングレードは、最新のアイテムのほとんどで「間違いなく非常にもう行かない」
    iPhoneのiOSバージョンのダウングレードは、最新のアイテムのほとんどで「間違いなく非常にもう行かない」 ‘iPhones
  • Total Electronics の内なる素晴らしいこと
    Total Electronics の内なる素晴らしいこと Artificial intelligence
  • Plasmosが住居用トラックを発表
    Plasmosが住居用トラックを発表 anti-Mastodon
  • Lorem.home: プレースホルダー写真の API
    Lorem.home: プレースホルダー写真の API anti-Mastodon
  • Mars Science Laboratory Aeroshell with Curiosity Internal 2011-10-05T18:30:04Z
    Mars Science Laboratory Aeroshell with Curiosity Internal 2011-10-05T18:30:04Z 𝙱𝚒𝚘 𝙴𝚡𝚙𝚎𝚛𝚒𝚖𝚎𝚗𝚝𝚜™
  • HN のデモンストレーション: Liftosaur – コーダー向け重量挙げトラッカー アプリ
    HN のデモンストレーション: Liftosaur – コーダー向け重量挙げトラッカー アプリ Awesome
FinanceDatabase: A database of 300.000 symbols (ETFs, Currencies, Crypto)

FinanceDatabase: A database of 300.000 symbols (ETFs, Currencies, Crypto)

Posted on January 7, 2023 By 📢 ℝ𝕒𝕧𝕖𝕤™

FinanceDatabase

BuyMeACoffee
Issues
Pull Requests
PYPI Version
PYPI Downloads

As a non-public investor, the sheer quantity of files that might perhaps presumably also moreover be stumbled on on the bag is extremely daunting. Making an are trying to
understand what form of corporations or ETFs are on hand is extremely great with there being tens of millions of
corporations and derivatives on hand available on the market. Sure, basically the most traded corporations and ETFs can mercurial be stumbled on
fair this capability that of they are known to the general public (for instance, Microsoft, Tesla, S&P500 ETF or an All-World ETF). Then all but again,
what else is available is frequently unknown.

This database tries to clear up that. It functions 300.000 symbols containing Equities, ETFs, Funds, Indices,
Currencies, Cryptocurrencies and Money Markets. It subsequently helps you to form a huge overview of sectors,
industries, forms of investments and great more.

The goal of this database is explicitly not to offer up-to-date fundamentals or stock files as these might perhaps presumably also moreover be obtained
with ease (with the help of this database) by utilizing yfinance,
FundamentalAnalysis or
ThePassiveInvestor. As an various, it affords insights into the merchandise
that exist in each country, commerce and sector and affords basically the most wanted files about each product. With
this files, that you simply can analyse particular areas of the financial world and/or procure a product that is arduous to search out.
Look for examples on the vogue that you simply can mix this database, and the earlier talked about programs the allotment
Examples.

Some key statistics of the database:

ProductQuantitySectorsIndustriesWorldwide locationsExchanges
Equities155.7051624211182
ETFs36.727364*94*10052
Funds57.8161678*438*10034
ProductQuantityClass
Currencies2.590174 Currencies
Cryptocurrencies3.624299 Cryptocurrencies
Indices86.35349 Exchanges
Money Markets1.3842 Exchanges

These numbers discuss about with families (iShares, Vanguard) and classes (World Stock, Right Property) respectively.
Here is an estimation. Obtaining the country distribution can handiest be performed by accumulating files on the underlying
or by handbook search.

Desk of Contents

  1. The consume of the Database
    1. Set up
    2. Functions
    3. Evolved Usage
  2. Examples
    1. Firms in the Netherlands
    2. Technical Analysis of Biotech ETFs
    3. United States’ Airlines
    4. Silicon Valley’s Market Cap
    5. DEGIRO’s Core Probability ETFs
  3. Questions & Solutions
  4. Contribution

The consume of the Database

To entry the database that you simply can download the total repository, however I strongly imply making consume of the bundle
intently attached to the database. It helps you to make a preference particular json files as properly as search by composed
files with a particular ask.

Set up

That you simply can presumably install the bundle with the next steps:

  1. pip install financedatabase
    • Alternatively, download the ‘Searcher’ itemizing.
  2. (within Python) import financedatabase as fd

Functions

The bundle has the next functions:

  • show_options(product, equities_selection=None, country=None, sector=None, commerce=None) – affords all on hand solutions from
    the functions below per product (i.e. Equities, Funds) which then might perhaps presumably also moreover be historical to receive files. That you simply can presumably capture a
    sub assortment of equities by getting into ‘countries’, ‘sectors’ or ‘industries’ for equities_selection as properly as capture
    the recount sectors and industries per country and industries per sector by the ‘country’ and ‘sector’ parameters.
    The commerce variable is a boolean that returns all industries, to what sector each corresponds and all countries
    which like corporations on this commerce.
  • select_cryptocurrencies(cryptocurrency=None) – with out a enter affords all cryptocurrencies, with enter affords
    the cryptocurrency of preference.
  • select_currencies(forex=None) – with out a enter affords all currencies, with enter affords
    the forex of preference.
  • select_etfs(category=None) – with out a enter affords all etfs, with enter affords all etfs of a
    particular category.
  • select_equities(country=None, sector=None, commerce=None) – with out a enter affords all equities, with enter
    affords all equities of a rustic, sector, commerce or a aggregate of the three.
  • select_funds(category=None) – with out a enter affords all funds, with enter affords all funds of a
    particular category.
  • select_indices(market=None) – with out a enter affords all indices, with enter affords all indices of a
    particular market which on the full refers to indices in a particular country (admire de_market affords DAX).
  • select_moneymarkets(market=None) – with out a enter affords all moneymarkets, with enter affords all moneymarkets of a
    particular market which on the full refers to moneymarkets in a particular country.
  • search_products(database, ask, search='abstract', case_sensitive=False, new_database=None) – with enter
    from the above functions, this characteristic searches for particular values (i.e. the ask ‘sustainable’) in
    regarded as one of many keys of the dictionary (which is by default the abstract). It also has the option to allow
    case-composed procuring which is off by default.

For users of the dealer DeGiro, that you simply would per chance presumably be in a utter to search out files on the tickers stumbled on in the
Fee Free ETFs list by selecting either
core_selection_degiro_filled (all files) or core_selection_degiro_filtered (filtered by abstract) as category
when utilizing the characteristic select_etfs.

By default, exchanges will not be integrated in the preference functions. Therefore, the quantity of files returned is less
than depicted in basically the major statistics. Within the occasion you make a selection to encompass all exchanges, please utter exclude_exchanges to False.

For added files about each characteristic that you simply can consume the fabricate-in help characteristic of Python. For
instance help(show_options) returns a conventional description, the that that you simply can imagine enter parameters and what is returned
as output.

Evolved Usage

Within the occasion you make a selection to store the database at a certain device (for instance your bag Fork) that you simply can create so with the variable
base_url which yow will detect in each of the above ‘capture’ functions. An instance can be:

  • select_funds(category='Africa Equity', base_url=)

That you simply can presumably also store the database in the neighborhood and show your local device with the variable base_url and by setting
use_local_location to Accurate. An instance can be:

  • select_etfs(category='Bank Mortgage', base_url='C:/Customers/jerbo/FinanceDatabase/Database/ETFs/', use_local_location=Accurate)

Examples

This allotment affords just a few examples of the possibilities with this bundle. These are merely just some of the things you
can create with the bundle. As that you simply can form a huge vary of symbols, elegant great any
bundle that requires symbols have to composed work.

Firms in the Netherlands

Working out which sectors exist in a rustic might perhaps presumably also moreover be attention-grabbing. No longer handiest to realise the point of hobby of the country however
also to realise which home holds basically the most files. Here is an indication of the show_options characteristic.
A characteristic principal to querying files from the Database.

Let’s originate by acquiring the outlandish countries, sectors and industries of all equities in the database:

import financedatabase as fd
# Receive all countries from the database
equities_countries=fd.show_options('equities', 'countries')
# Receive all sectors from the database
equities_sectors=fd.show_options('equities', 'sectors')
# Receive all industries from the database
equities_industries=fd.show_options('equities', 'industries')
# Receive all countries   sectors   industries from the database
equities_all_categories=fd.show_options('equities')

This affords the next lists (where equities_all_categories is a dictionary with these three lists):

FinanceDatabase

Then, I are searching for to explore how many corporations exist in each sector in the Netherlands. Let’s count all corporations with the
following code, I skip a sector when it has no files and likewise create not encompass corporations which might be not categorized:

equities_per_sector_netherlands={}
for sector in equities_sectors[1:]:
    strive:
        equities_per_sector_netherlands[sector]=len(fd.select_equities(country='Netherlands', sector=sector))
    with the exception of ValueError as error:
        print(error)

Lastly, I device the guidelines in a pie chart and add some formatting to originate the pie chart watch rather nicer:

myth, values=zip(*equities_per_sector_netherlands.devices())
colors=['b', 'g', 'r', 'c', 'm', 'y', 'k', 'tab:blue', 'tab:orange', 'tab:gray',
          'lightcoral', 'yellow', 'saddlebrown', 'lightblue', 'olive']
plt.pie(values, labels=myth, colors=colors,
        wedgeprops={'linewidth': 0.5, 'edgecolor': 'white'})
plt.title('Firms per sector in the Netherlands')
plt.tight_layout()
plt.show()

This ends in the next graph which affords a tag which sectors are dominant within The Netherlands.
Unnecessary to claim this is a mere instance and to in reality understand the significance of obvious corporations for the Netherlands,
an in-depth prognosis have to be performed.

FinanceDatabase

Technical Analysis of Biotech ETFs

With the help of ta and yfinance I will
mercurial invent a widespread technical prognosis on a personnel of ETFs categorized by the FinanceDatabase. I originate by
procuring the database for ETFs linked to Nicely being after which originate a subselection by procuring, in the composed database,
for biotech-linked ETFs:

import financedatabase as fd
health_etfs=fd.select_etfs(category='Nicely being')
health_etfs_in_biotech=fd.search_products(health_etfs, 'biotech')

Then, I receive stock files on each ticker and take away tickers that don’t like any files in my chosen period. The period I even like
chosen displays the preliminary impact of the Coronacrisis on the financial markets.

import yfinance as yf
stock_data_biotech=yf.download(list(health_etfs_in_biotech.keys()), originate="2020-01-01", cease="2020-06-01")['Adj Close']
stock_data_biotech=stock_data_biotech.dropna(axis='columns')

Next up I initialise subplots and loop over all composed tickers. Here, I fabricate a brand unique short-term DataFrame that I possess
with the adjusted finish prices of the ticker as properly because the Bollinger Bands. Then I device the guidelines in regarded as one of
the subplots.

import pandas as pd
from ta.volatility import BollingerBands
import matplotlib.pyplot as plt
make a selection, axis=plt.subplots(4, 3)
row=0
column=0
for ticker in stock_data_biotech.columns:
    data_plot=pd.DataFrame(stock_data_biotech[ticker])
    indicator_bb=BollingerBands(finish=stock_data_biotech[ticker], window=20, window_dev=2)
    data_plot['bb_bbm']=indicator_bb.bollinger_mavg()
    data_plot['bb_bbh']=indicator_bb.bollinger_hband()
    data_plot['bb_bbl']=indicator_bb.bollinger_lband()
    axis[row, column].device(data_plot)
    axis[row, column].set_title(health_etfs_in_biotech[ticker]['long_name'], fontsize=6)
    axis[row, column].set_xticks([])
    axis[row, column].set_yticks([])
    column =1
    if column==3:
        row =1
        column=0
        
make a selection.suptitle('Technical Analysis of Biotech ETFs for the length of Coronacrisis')
make a selection.tight_layout()

This ends in the next graph which affords a tag wether Biotech ETFs had been oversold or overbought and
how this create is neutralised (to some level) in the months after. Read more
about Bollinger Bands right here.

FinanceDatabase

United States’ Airlines

If I make a selection to form all corporations for the length of the US listed below ‘Airlines’ I will write the
following code:

import financedatabase as fd
airlines_us=fd.select_equities(country='United States', commerce='Airlines')

Then, I will consume programs admire yfinance to mercurial receive files from
Yahoo Finance for every symbol in the commerce admire this:

from yfinance.utils import get_json
from yfinance import download
airlines_us_fundamentals={}
for symbol in airlines_us:
    airlines_us_fundamentals[symbol]=get_json("https://finance.yahoo.com/quote/"   symbol)
airlines_us_stock_data=download(list(airlines_us))

With just a few traces of code, I even like composed all files from a particular commerce for the length of the US. From right here on
that you simply can compare elegant great any key statistic, major- and stock files. As an illustration, let’s device a simple bar
chart that affords insights in the Rapidly Ratios (indicator of the overall financial energy or weak point of an organization):

import matplotlib.pyplot as plt
for symbol in airlines_us_fundamentals:
    quick_ratio=airlines_us_fundamentals[symbol]['financialData']['quickRatio']
    long_name=airlines_us_fundamentals[symbol]['quoteType']['longName']
    if quick_ratio is None:
        continue
    plt.barh(long_name, quick_ratio)
plt.tight_layout()
plt.show()

Which ends in the graph displayed below (as of the 18th of October 2021). From this graph that you simply can title
corporations that currently lack ample sources to quilt their liabilities (snappy ratio 1). Both too low and too high might perhaps presumably originate you wonder whether or not the company adequately
manages its sources.

FinanceDatabase

Silicon Valley’s Market Cap

If I are searching for to realise which listed technology corporations exist in Silicon Valley, I will receive all equities of
the sphere ‘Skills’ after which filter basically based on metropolis to form all listed technology corporations in ‘Silicon Valley’.
The metropolis ‘San Jose’ is where Silicon Valley is positioned.

import financedatabase as fd
all_technology_companies=fd.select_equities(sector='Skills')
silicon_valley=fd.search_products(all_technology_companies, ask='San Jose', search='metropolis')

Then I originate accumulating files with the FundamentalAnalysis bundle.
Here I receive basically the major metrics which encompass 57 different metrics (starting from PE ratios to Market Cap).

import FundamentalAnalysis as fa
API_KEY="YOUR API KEY HERE"
data_set={}
for ticker in silicon_valley:
    strive:
        data_set[ticker]=fa.key_metrics(ticker, API_KEY, period='annual')
    with the exception of Exception:
        continue

Then I originate a preference basically based on the final 5 years and filter by market cap to take a look at the corporations by formula of dimension
with one but some other. This also causes corporations which like not been listed for five years to be filtered out of my dataset.
Lastly, I device the guidelines.

import pandas as pd
import matplotlib.pyplot as plt
years=['2016', '2017', '2018', '2019', '2020']
market_cap=pd.DataFrame(index=years)
for ticker in data_set:
    strive:
        data_years=[]
        for 365 days in years:
            data_years.append(data_set[ticker].loc['marketCap'][year])
        market_cap[all_technology_companies[ticker]['short_name']]=data_years
    with the exception of Exception:
        continue
market_cap_plot=market_cap.device.bar(stacked=Accurate, rot=0, colormap='Spectral')
market_cap_plot.myth(prop={'dimension': 5.25})
plt.show()

This ends in the graph displayed below which separates the tiny corporations from the clear corporations. Present that
this does not encompass all technology corporations in Silicon Valley this capability that of most will not be listed or will not be integrated
in the database of the FundamentalAnalysis bundle.

FinanceDatabase

Core Probability ETFs

Usually, Excel simply affords the correct solution whereas you happen to make your mind up on to love compare a vary of ETFs mercurial. Therefore, but some other
option is to consume my program ThePassiveInvestor. The perform of
this program is to mercurial compare a clear assortment of ETFs by accumulating their major attributes
(i.e. holdings, return, volatility, monitoring error).

As I make investments with DeGiro, a colossal originate for me can be by accumulating all ETFs which might be listed for the length of the Core
Probability (price free) list of my dealer with the next code (or manually form them from the json file):

import financedatabase as fd
core_selection=fd.select_etfs("core_selection_filtered", exclude_exchanges=False)

Then I convert the keys of the core_selection into a Sequence and ship it to Excel without index and header.

import pandas as pd
tickers=pd.Sequence(core_selection.keys())
tickers.to_excel('core_selection_tickers.xlsx', index=None, header=None)

Within the occasion you open the Excel file created you explore the next lay-out (which corresponds to the lay-out current
by this system):

ThePassiveInvestor

Then I open ThePassiveInvestor program and consume the Excel as enter. The major enter is the Excel that you simply make a selection to love to
be stuffed with enter from your tickers (created by this system). The 2nd enter is the file you created above.

ThePassiveInvestor

Must you bustle this system it begins accumulating files on each ticker and fills the Excel with files. After this system
is completed that you simply would per chance presumably be in a utter to search out an Excel that appears to be very great admire the GIF you explore below. With this files that you simply can
safe a tag whether or not the ETF is what that you simply would per chance presumably be procuring for.

ThePassiveInvestor

Questions & Solutions

In this allotment yow will detect solutions to steadily asked questions. In case the answer to your ask will not be right here,
take into accout growing an Shriek.

  • How did you safe your files?
    • Please verify the Methodology.
  • Is there beef up for ?
    • Yes, presumably there is because the database involves 111 countries. Please verify
      right here.
  • How can I procure out which countries, sectors and/or industries exists for the length of the database without desirous to substantiate
    the database manually?

    • For this that you simply can consume the show_options characteristic from the bundle attached to this database. Please explore
      this instance
  • As soon as I receive files by yfinance I see that not all tickers return output, why is that?
    • Some tickers are merely holdings of corporations and subsequently create not in reality like any files attached to them.
      Therefore, it is far real looking that not all tickers return files. Within the occasion that you simply would per chance presumably be composed in doubt, search the ticker on
      Google to explore if there is in reality no files on hand.
  • How recurrently does the Database safe up to this point?
    • I goal at doing this each few months. The database does not like to safe up to this point recurrently since the guidelines
      composed is handiest traditional files. As an illustration, a Sector title usually changes and corporations create not are inclined to
      cross to but some other country each few months. Therefore, the guidelines have to composed protect up to this point for several months.
      Within the occasion you make a selection to make a contribution to updating the database then that is device appreciated. Please verify the
      Methodology for steerage on how.
  • Assemble your sector and commerce names consume the identical naming convention as GIC sector?
    • No longer fully however very the same, or not it is basically based on Yahoo Finance’s sectors and industries. Search industries and
      sectors. Per chance a future adjustment can be to originate them aligned with GICS.

Contribution

Projects are lunge to love (tiny) errors and might perhaps presumably continuously be improved. Therefore, I highly support you to submit
points and fabricate pull requests to toughen the bundle.

The final replace to the database is the 18th of October 2021. I continuously procure Pull Requests each few months
to protect the database up to this point. Extending the quantity of tickers and files is also great appreciated. Must you make a selection to create
this, please present me first to total a few users doing the right identical part.

Buy Me A Coffee

>
𝚆𝚊𝚝𝚌𝚑 𝙽𝙾𝚆 📺

NASA, Technology Tags:database, FinanceDatabase, Smart

Post navigation

Previous Post: Chinese billionaire Jack Ma to relinquish alter of Ant Neighborhood
Next Post: Even More Bay Place apart House To find together

Related Posts

  • PyTorch discloses malicious dependency chain compromise over holidays
    PyTorch discloses malicious dependency chain compromise over holidays NASA
  • The upward thrust and tumble of the mail-represent residence (2015)
    The upward thrust and tumble of the mail-represent residence (2015) NASA
  • Why JVM standard profilers are restful safepoint biased?
    Why JVM standard profilers are restful safepoint biased? NASA
  • US DOJ Is Seizing Banking Assets, Robinhood Shares Linked to FTX, Court Told
    US DOJ Is Seizing Banking Assets, Robinhood Shares Linked to FTX, Court Told NASA
  • The digital greenback is approaching the encourage of the FTX cave in
    The digital greenback is approaching the encourage of the FTX cave in NASA
  • Nobel Peace Prize Winners Bear Deep CIA Ties
    Nobel Peace Prize Winners Bear Deep CIA Ties NASA
  • Recessions Are Going to Turn out to be Fixed Occurrences
    Recessions Are Going to Turn out to be Fixed Occurrences Technology
  • Fixing Cart-Pole Swingup with a Hierarchical Controller
    Fixing Cart-Pole Swingup with a Hierarchical Controller NASA
  • Will the US gaze a ‘richsession’ – or will economic turmoil hit the uncomfortable hardest?
    Will the US gaze a ‘richsession’ – or will economic turmoil hit the uncomfortable hardest? Technology
  • Annual 2022 United Van Lines Nationwide Movers Watch
    Annual 2022 United Van Lines Nationwide Movers Watch NASA

Recent Posts

  • YTsaurus: エクサバイト規模のストレージおよび処理システムが元のソースになりました
  • YTsaurus – Yandex オープン ソースの真の知識プラットフォーム
  • フロート – 基本的に完全にプログラミングに基づいており、AI と人間が一緒になる可能性があります。
  • HN の繰り返し: Pysh – Python での droop shell コマンド
  • Screen HN: Orphic – *Nix システム用の純粋な言語インターフェース

Recent Comments

  1. robga on Excessive Avenue コーヒーのカフェイン ステージはさまざまで、テストでは
  2. Loic on 行方不明の放射性タブレットは、必死の捜索の後、WA奥地で偶然見つけました
  3. minihat on メタは、標準的な VR e スポーツ Echo Area をシャットダウンします
  4. dafelst on フレーム ポインターの巻き戻しによる Move 実行トレーサーのオーバーヘッドの削減
  5. cloudking on GraphGPT: 構造化されていないテキストの肯定的な素材からのレコードデータ グラフの外挿
  • K8s を利用した Git プッシュ デプロイ
    K8s を利用した Git プッシュ デプロイ anti-Mastodon
  • SQLite: ファイルシステムより 35% 高速
    SQLite: ファイルシステムより 35% 高速 anti-Mastodon
  • ユニークなアンテナとマイクロチップが科学と SF の境界を曖昧にします
    ユニークなアンテナとマイクロチップが科学と SF の境界を曖昧にします Antennas
  • OkCupid は ChatGPT を使用して顧客にクイズを出します
    OkCupid は ChatGPT を使用して顧客にクイズを出します anti-Mastodon
  • Web オンライン ページ用の ChatGPT 礼拝チャットボットを発明する
    Web オンライン ページ用の ChatGPT 礼拝チャットボットを発明する Artificial intelligence
  • 1986 年のブラジルでのリアル UFO ナイト
    1986 年のブラジルでのリアル UFO ナイト Artificial intelligence
  • あなたがたまたまOpenBSDにくすぐられているのと同じように、間違いなく、どのラップトップも十分に頑丈です
    あなたがたまたまOpenBSDにくすぐられているのと同じように、間違いなく、どのラップトップも十分に頑丈です anti-Mastodon
  • Yahoo が再び注目を集める
    Yahoo が再び注目を集める Artificial intelligence
MAILANON
2100 MAIL
SEO
METAVERSE
BioLINK
CRYPTO MINING
CASINO
DEFI-TRACKER
StartApp Network
RAVES-MONSTER-GAME
RAVES EXCHANGE
RAVES NFT
KVANTA TV

Copyright © 2023 Nasare™🚀.

Powered by PressBook News Dark theme